一、贴片机基本结构:
贴片机是机-电-光以及计算机控制技术的综合体。它通过吸取-位移-定位-放置等功能,实现了将SMD元件快速而准确地贴装到PCB板所指定的焊盘位置。贴片机虽然品种繁多,但其基本构成如下:
(一) 贴装头
从电装机器人的概念来说,贴装头就是一只智能的机械手,它能按要求拾取元件,精确地贴放到预置的焊盘上。
a. 元件拾放
拾取元件一般是采用真空负压的吸嘴吸住元件,它结构简单便于维护,近年这种产生负压的微型真空发生器组件已经成为多家公司的系列产品,专供贴装头的设计者选用。
在拾放的动作中,吸嘴在做Z方向的移动时,既要拾放速度快,而且还要平稳。早期的吸嘴Z方向移动是选用微型气缸完成的,在近十年的使用中发现气缸易磨损,寿命短,噪音大。目前不少新机型都选用了新颖的机电一体化传动杆代替,使Z向运动状态都可以控制,大大提高Z方向运动综合性能。
b. 吸嘴
当真空负压产生之后吸嘴是直接接触SMD元件的零件,吸嘴孔的大小与SMD元件的外形有每一台贴片机都有一套实用性很强吸嘴。为了贴片机适应不同元件的贴装,所以还配有一个自动更换吸嘴的装置。吸嘴与吸管之间还有一个弹性补偿的缓冲机构,保证在拾取过程对贴片元件的保护,提高元件的贴装率。
c. 气动电磁阀
贴装头的微型气动电磁是贴装头上又一个重要组件,它管理着移动和拾放等功能,随贴片机的发展集成电磁阀组亦有了相当大的发展,有些单个电磁阀厚度仅为10-18毫米。而且电磁铁驱动功率小,一般电路的驱动电平都可直接驱动,随着市场的不断发展,这些新颖的气动都能从市场上采购, 给贴片机的设计开发提供有利条件。
d. 元件的定位
贴片头的元件定位系统是贴片质量的一个重要环节,也是研究贴片技术难点之一,当被贴元件吸住元件之后,元件就处于不移稳定的悬浮状态。早期的技术用机械爪进行被动定位,从而解决了早期贴片机的元件定位问题,但必竟是机械方式,机械制造中的各种误差,直接反映到元件定位的质量,特别是贴片速度提高时,机械的噪音,零件的磨损和精度的寿命等都限制了纯机械定位爪的进一步发展。
近年视觉系统的采样技术,伺服机构,计算机图像处理等,已经改变了单纯用机械来解决定位问题。而是用非接触的红外,激光对中系统,并在移动过程中对偏离值进行自动修正。
e. 元件旋转
当吸嘴头吸持器件移动定位时,大部分元件都作一定量的回转运动(q角),首先是修正板上元件的安装轴线和元件在移动过程中轴线的角度(q’ 角),其二是解决送料器上元件与PCB板元件焊盘轴线的角度差(q ”角)q = q’+q” 修正元件贴装角度偏差的这一机构,早其采用开环步进电机控制,通过小型同步皮带进行回转操作。现在一些新颖的贴片机已被一些专用微电机所代替,使机构的性能有很大的提高。为了提高贴片速度在贴片头都采用了多吸嘴的组合,它的操作程序都由计算机精密控制。
f. 其他
使贴头各机构能协同工作安装着多种形式的传感器,有效地协调贴片的工作状态。当贴片功能决定之后,贴片头总体结构设计就成了贴片机的关键,贴片头是一个高速运动的组件要提高精度就必须减小它的重量和体积,所以设计一个结构凑功能全齐的贴片头,也是贴片的设计重点。
在设计贴片头之前要多研究分析各种贴装的特点,还要充分由集机电一体化技术发展的各种器件性能,结构、材料等,如传感器,微电机,激光器,真空发生器,视觉识别系统,微型电磁阀,微型珠滚丝杆等。对设计方案还要进行大量工艺研究和实践的摸索和试验,克服各种不正常现象如飞片,立片,漏片等,不然是无法研究自已的贴片头,假如贴片是采用国外引进的,那么你的贴片机国产化的水平永远将是滞后的。
g. 完成贴装头设计后如何制造也是一个棘手的问题,一般说,加工最好是加工中心或数控机床,这类设备上进行,以达到高精度效率。由于加工尺寸的离散性小,能保证装配上的要求。
(二).承载机构
PCB板的承载机构,有承载平台,真空支撑杆,PCB板移动的传输带,固定位 PCB板的定位销钉,反映定位状态的传感器、PCB板的压板,PCB板在这承载平台上传动平稳,定位准确。
贴片机和所有机械设备一样,还有一个承载框架,以前常用金属型材和钢板等材料,通过焊接方法制造,随着贴片机速度精度的提高,对框架基座的稳定性提出了更高的要求,近几年国外不少机型又选用机床设备传统的铸件结构,我国的铸造技术有相当水平,这一工艺技术又便于一般的小批量生产,这也是我们开发贴片机的一个有利条件。
3 片机X-Y座标传动的伺服系统
贴片机X-Y座标传动伺服系统有两种形式,一种是PCB板作X-Y方向的正交运动。另一种方法是由贴片头作 X-Y座标平移运动,而PCB板仍定位在一定精度的承载平台上。这两种相对运动的方法都是为了将被贴的元件准确拾放到 PCB板的焊盘上。
a. X-Y机构的有关参数
驱动X / Y二维运动构件的参数也是贴片机精度的关键,假如贴片装头它的直线移动速度为1米/秒,滚珠丝杆的导程为20毫米,那么当贴片头移动1米,丝杆需要旋转50转,伺服电机的转速达到3000转/分,如果伺肥电机的反馈码盘取4000线,它每转就产生4000脉冲。若对20毫米导程的丝杆,那么每脉冲的移为5毫米,在3000转/分的条件反馈脉冲的输出频率要达到200千赫,伺服电机的工作,实际是一组采样数据的控制系统,它是由电脑直接控制,负责接受位移参数指令,采集位置传感器的反馈信号,计算机控制函数(即控制规律),以及产生数字形式的控制信号。数字形式的控制信号,数字形式控制信号经过D/A转换和伺服放大后,驱动执行机构,使输出轴上贴片头跟踪被贴元件PCB板上位置的指令运动,从而组成数字闭环控制系统。在系统控制设计之后就需要有一组的合理结构装置和相应的传动元件。
b. X-Y结构按装
X-Y的二维运动都是在X/Y轴的导轨上进行。驱动的动力伺服电有步进电机等 ,它们都应很好的动态特性和位置精度,承载运动件导轨是运动导向精度的关键零件。目前,大部分的精刻滚珠直线导轨,这种导轨摩擦系数小,精度高,寿命长,安装维护方便,便于标准化生产,常用直线轴承导轨的断面形状也有多种,在机构形式上也有大跨距双丝杆的横梁结构,单悬肩双导轨式等。
在导轨安装时要保证两导轨在空间平行,并保持水平工作面,导轨应直线性好,并不应有扭弯等几何变形,滚珠丝杆与伺服电机联结处,有一个高精度高性能的弹性联轴器有效地消除安装过程中产生的不同轴不同心等现象。从目前市场供货情况来看交流伺服电机,高精度大导程滚珠丝杆,小型伺服电机,传动轴上联轴器等都可从市场选购,这也是有利确保贴片的设计和生产质量。
自从贴片机问世以来,贴片机的控制都是由电脑解决,所以每台贴片机都有它自已的一套操作软件,它有种位号输入输出和一个良好的操作程序,随着计算机技术的发展,Windows操作平台上软件的编制和操作的高智能化、可视化,而使得显视屏上的人机界面都有很大的改进和创新,又由于计算机辅助设计CAD技术的高,电路CAD设计版本不断升级如Protel软件使贴片机的智能化水平有很大的发展。
二、贴片机的选型:
随着表面贴装技术的迅速发展,贴片机在我国电子组装行业中的应用越来越广泛。面对型号众多的贴片机,如何选型仍是一个复杂而艰难的工作,对贴片机选型时应注意几个关键技术问题。
(一)、贴片机类型
目前贴片机大致可分为四种类型:动臂式、复合式、转盘式和大型平行系统。不同种类的贴片机各有优劣,通常取决于应用或工艺对系统的要求,在其速度和精度之间也存在一定的平衡。
动臂式机器具有较好的灵活性和精度,适用于大部分元件,高精度机器一般都是这种类型,但其速度无法与复合式、转盘式和大型平行系统相比。不过元件排列越来越集中在有源部件上,比如有引线的QFP和BGA阵列元件,安装精度对高产量有至关重要的作用。复合式、转盘式和大型平行系统一般不适用于这种类型的元件安装。动臂式机器分为单臂式和多臂式,单臂式是最早先发展起来的现在仍然使用的多功能贴片机。在单臂式基础上发展起来的多臂式贴片机可将工作效率成倍提高.
复合式机器是从动臂式机器发展而来,它集合了转盘式和动臂式的特点,在动臂上安装有转盘,像Simens的Siplace80S系列贴片机,有两个带有12个吸嘴的转盘。由于复合式机器可通过增加动臂数量来提高速度,具有较大灵活性,因此它的发展前景被看好,如Simens最新推出的HS50机器就安装有4个这样的旋转头,贴装速度可达每小时5万片。
转盘式机器由于拾取元件和贴片动作同时进行,使得贴片速度大幅度提高,这种结构的高速贴片机在我国的应用最为普遍,不但速度较高,而且性能非常的稳定,如松下公司的MSH3机器贴装速度可达到0.075秒/片。但是这种机器由于机械结构所限,其贴装速度已达到一个极限值,不可能再大幅度提高。
大型平行系统由一系列的小型独立组装机组成。各自有丝杠定位系统机械手,机械手带有摄像机和安装头。各安装头都从几个带式送料器拾取元件,并能为多块电路板的多块分区进行安装,这些板通过机器定时转换角度对准位置。如PHILIPS公司的FCM机器有16个安装头,实现了0.0375秒/片的贴装速度,但就每个安装头而言,贴装速度在0.6秒/片左右,仍有大幅度提高的可能。
复合式、转盘式和大型平行系统属于高速安装系统,一般用于小型片状元件安装。转盘式机器也被称作"射片机"(Chip shooter),因为它通常用于组装片式电阻电容。另外,此类机器具有高速"射出"的能力。因为无源元件,?quot;芯片"以及其他引线元件所需精度不高,射片机组装可实现较高的产能。高速机器由于结构较普通动臂式机器复杂许多,因而价格也高出许多,在选择设备时要考虑到这一点。
试验表明,动臂式机器的安装精度较好,安装速度为每小时5000-20000个元件(cph)。复合式和转盘式机器的组装速度较高,一般为每小时20000-50000个。大型平行系统的组装速度最快,可达每小时50000?100000个。
(二)、视觉系统
机器视觉系统是显著影响元件安装的第二个因素,机器需要知道电路板的准确位置并确定元件与板的相对位置才能保证自动组装的精度。
成像通过使用视像系统完成。视像系统一般分为俯视、仰视、头部或激光对齐,视位置或摄像机的类型而定。
(1)俯视摄像机在电路板上搜寻目标(称作基准),以便在组装前将电路板置于正确位置;
(2)仰视摄像机用于在固定位置检测元件,一般采用CCD技术,在安装之前,元件必须移过摄像机上方,以便做视像处理。粗看起来,好象有些耗时。但是,由于安装头必须移至送料器收集元件,如果摄像机安装在拾取位置(从送料处)和安装位置(板上)之间,视像的获取和处理便可在安装头移动的过程中同时进行,从而缩短贴装时间;
(3)头部摄像机直接安装在贴片头上,一般采用Line-senso r技术,在拾取元件移到指定位置的过程中完成对元件的检测,这种技术又称为"飞行对中技术",它可以大幅度提高贴装效率;
(4)激光对齐是指从光源产生一适中的光束,照射在元件上,来测量元件投射的影响。这种方法可以测量元件的尺寸、形状以及吸嘴中心轴的偏差。但对于有引脚的元件,如:SOIC、QFP和BGA则需要第三维的摄像机进行检测。这样每个元件的对中又需要增加数秒的时间。很显然,这对整个贴片机系统的速度将产生很大影响。在三种元件对中方式(CCD、Line-sensor、激光)中,以CCD技术为最佳,目前的CCD硬件性能都具备相当的水平。在CCD硬件开发方面前些时候开发了"背光"(Back-Lighting)及"反射光"(Front-Lighting)技术,以及可编程的照明控制,以更好应付各种不同元件贴装需要。
(三)、送料
动臂式机器可支持多种不同类型的送料器,如带式、盘式、散装式、管式等。这一点与高速安装系统形成鲜明对照,后者只能使用散装式或带式两种送料器。
在安装许多大型IC时,如QFP和BGA,动臂式机器是惟一的选择。除了贴装精度外,高速机器不支持盘式送料器也是重要原因。
一般来说制造商应考虑供料器在其机器上的通用性,但有时制造商也会为其某种特定机器设计送料器,这样就限制了送料器在其他机器上的用途。专用机器不仅会导致大量送料器闲置,而且还需要空间存储它们。
(四)、灵活性
由于目前电子产品的竞争日趋激烈,生产的不确定因素加大,需经常调整产品的产量或安排产品转型,因而对贴片机也就提出了相应的要求,即要求具有良好的灵活性,以适应当前千变万化的生产制造环境,这就是我们常说的柔性制造系统(FMS)。例如美国环球仪器公司的贴片机,从点胶到贴片的功能互换时,只需将点胶组件与贴片组件互换,这种SMT设备适合多任务、多用途、投产周期短的加工企业。机器灵活性是我们在选购设备时要考虑的关键因素
贴片机的选择标准:
当购买电子装配中的元件贴放设备时,按适当的标准评估设备是很重要的。以下是考虑的参数一览表。标准分成四个方面:PCB处理、元件范围、元件送料器和贴放要求。